
Cinelab model Documentation
Release 1.1

LIRIS

July 26, 2012

CONTENTS

1 Context 1

2 Introduction 3

3 Cinelab glossary 5
3.1 Package . 5
3.2 Annotation . 5
3.3 Annotation type . 5
3.4 Relation between annotations . 5
3.5 Relation type . 6
3.6 Resource . 6
3.7 Group . 6
3.8 Query . 6
3.9 Description schema . 6
3.10 View . 6

4 Hypervideo model 9
4.1 General points . 9
4.2 Element type . 10

5 Cinelab Application Model - cam 17
5.1 Generalities . 17
5.2 Elements . 19

6 Cinelab file format 23
6.1 Introduction . 23
6.2 File extensions . 23
6.3 Cinelab Zip-Packages . 23
6.4 XML serialization . 24
6.5 JSON serialization . 32

i

ii

CHAPTER

ONE

CONTEXT

Advene (Annotate Digital Video, Exchange on the NEt) is an ongoing project in the LIRIS laboratory (UMR 5205
CNRS) at University Claude Bernard Lyon 1. It aims at providing a model and a format to share annotations about
digital video documents (movies, courses, conferences...), as well as tools to edit and visualize the hypervideos gener-
ated from both the annotations and the audiovisual documents. Teachers, moviegoers, etc. can use them to exchange
multimedia comments and analyses about video documents.

The data model supporting the Advene application offers, in addition to the annotation storage itself, an explicitation of
their structure (through notions of schema and annotation type), as well as an explicit view concept (templates applied
on data to produce hypervideos) and queries. The following figure sums up the principle of the use of hypervideos.

Figure 1.1: Hypervideo creation and use in Advene

1

Cinelab model Documentation, Release 1.1

Collaborations with other partners like IRI during the Cinelab project (2007-2008) led us to identify weaknesses in the
first version of the data model, and to propose an evolution addressing these issues. This document specifies the new
model and format, used for exchanging audiovisual metadata among Cinelab project partners, and more widely as a
storage and exchange format for various applications (especially Advene and Lignes de temps). The Cinecast projet
(2009-2012) allowed us to confront these evolutions to new application fields and other partners, and validate their
relevance.

2 Chapter 1. Context

http://www.iri.centrepompidou.fr/
http://advene.org/cinelab/
http://advene.org/cinelab/
http://advene.org/
http://www.iri.centrepompidou.fr/outils/lignes-de-temps/
http://www.cinecast.fr/

CHAPTER

TWO

INTRODUCTION

This document is composed of 4 parts.

First, a presentation targeted at users of concepts and vocabulary used in the project. It gives a big picture of the
different elements.

Then, we define the hypervideo model, designed on the basis of our work in the Advene project. It defines a minimal
data structure needed to implement hypervideos.

The next part presents the Cinelab Applicative Model and more precisely specifies and brings operational constraints
on the abstract model presented before, in order to get an implementation of the notions presented in the concepts and
vocabulary part.

Finally, the last part specifies an XML+ZIP and a JSON-based serialisation formats for Cinelab data, so that they can
be shared among applications.

3

Cinelab model Documentation, Release 1.1

4 Chapter 2. Introduction

CHAPTER

THREE

CINELAB GLOSSARY

This part aims at giving a user-targeted description of the concepts used in Cinelab.

3.1 Package

A package is a consistent set of references to medias, description schemas, annotations, relations, views, resources,
queries, sets (in the form of list or tags), and other packages (dynamically imported/referenced).

Elements from a dynamically imported package can be accessed from the importer package.

A dynamic import is a simple reference to the imported package. The content of the imported package is available
“in” the importer package, but cannot be directly modified from the importer package. If data has to be modified, then
the user has to import it by copying the original elements into the desired package. Each copied element would then
be duplicated, and both instances (original and copy) could be modified independently.

3.2 Annotation

An annotation is data - called annotation content - linked to a temporal fragment of a movie.

An annotation belongs to a type (a category).

3.3 Annotation type

An annotation type offers a way to categorise annotations. This categorisation has two goals:

1. offer an intrinsic and native way of grouping a set of annotations, identified by a name/id (the annotation is
created as an instance of this type)

2. specify some of the characteristics of its annotations, typically constraints over its content (for instance: free
text, image, structured contents with constrained fields, etc) (the annotation content is constrained)

A “General annotation” type always exists.

3.4 Relation between annotations

A relation can link multiple annotations - called relation members - and can possess a content. It belongs to a type (a
category).

5

Cinelab model Documentation, Release 1.1

For instance, a binary relation between two annotations of type Shot may allow to describe a narrative consequence
between two shots, describing this consequence in the relation content.

3.5 Relation type

A relation type categorises relations. This categorisation has two goals:

1. offer an intrinsic and native way of grouping a set of relations, identified by a name/id (the relation is created
as an instance of this type)

2. specify some of the characteristics of its relations, typically constraints over the number and type of their mem-
bers (for instance: link exactly 2 Shot annotations) and their content (for instance: free text, image, structured
contents with constrained fields, etc) (the annotation content and properties are constrained).

A “General relation” type always exists.

3.6 Resource

A resource is a data file linked to a package. It can be involved in view renditions.

3.7 Group

A group allows to define element categories in a more flexible way than the annotation types and relations types :

• the same element can belong to many groups (while an annotation has one and only one annotation type).

• a group can contain heterogeneous elements (annotations of different types, annotations and relations, etc.)

Any element (annotation, relation, schema, type, view...) can be associated to a group.

Groups are expressed as lists (enumerations) and tags in the model.

3.8 Query

A query returns a set of elements from the package that match a number of criteria.

3.9 Description schema

A description schema is a way to describe the structure of a movie annotations.

A description schema defines categories of annotations (possibly specifying their contents), ways of linking annota-
tions (through typed relations), etc., that it to say annotation types and relation types.

3.10 View

A view is a way to present a set of annotations and the videos they are linked with. As is often the case, there can
sometimes be a confusion between the view specification (for instance a HTML template with processing directives)
and the view rendition (with the previous example, the generated HTML document, where directives inserted data from

6 Chapter 3. Cinelab glossary

Cinelab model Documentation, Release 1.1

specified elements). Thus, a view can be transmitted by transmitting its specification (then the directives processing
will be carried out by the destination), or by transmitting its rendition. The precise term (specification or rendition)
will be used in case of ambiguity.

For instance, a HTML document presenting a table of contents for a video, generated from annotation indicating
different sequences and offering a direct access to the video, is an example of view that can be qualified as static. The
specification of this view can be realised through a template language, as is done in Advene.

Overlaying the video with textual information (captioning) is another view example, that can be qualified as dynamic.
The specification of this kind of views needs specific formats and models, such as a Event-Condition_Action as done
in Advene, or a declarative specification as done in SMIL.

3.10. View 7

Cinelab model Documentation, Release 1.1

8 Chapter 3. Cinelab glossary

CHAPTER

FOUR

HYPERVIDEO MODEL

We propose in this section a conceptual model for hypervideos, so that they can be created, stored and shared.

Our model is composed of two-layers. The first layer, named core model, aims at being general enough to match
a number of uses, as independently as possible from technological evolutions. The second layer, named applica-
tive model, specialises the core model through a number of technical decisions that make it directly implementable.
Multiple applicative models can be proposed over the core model, but the Cinelab project aims at finding a common
applicative model that can be useful for many partners/uses.

This section focuses on the core model, indicating the points that need to be more precisely specified in the applicative
model.

4.1 General points

4.1.1 Package

The package is the documentary unit of the hypervideo model. It contains a set of elements, linked through different
relations (see below).

A package can be identified by a URI, that can identify it persistently (independently from the way it was obtained).
When a package does not have a URI, it is identify through the URL used to access it.

4.1.2 Elements

All elements in a package are uniquely identified by a character string composed of alphanumerical characters, dashes,
underscores and colons (:), matching the following regular expression:

^([a-zA-Z_][a-zA-Z0-9_\-]*|:[a-zA-Z0-9_:\-]*)$

NB: if a colon (:) is used in an identifier, then the identifier MUST begin with :. This constraint is necessary for the
correct handling of dynamic imports (see section Dynamic import).

Each element belongs to an element type, among those defined in section Elements. Two elements, even of different
types, cannot have the same id in the same package.

If an applicative model wants to define a specific (internal) role for an element, it should use for this element an id
starting with :. Applications should not allow users to use ids starting with : other than those defined by applicative
models.

An element id can be used as a fragment on the package URI, in order to identify the element from out of
the package. Given a package whose URI is http://advene.org/packages/example1.czp, contain-

9

Cinelab model Documentation, Release 1.1

ing an element with id a1. This element can be addressed (outside of the package) with the following URI:
http://advene.org/packages/example1.azp#a1

4.1.3 Metadata

The package and any of its elements can be enriched with any metadata, defined or not in the model. This metadata is
made of (key, value) couples, where key is an arbitrary string (it SHOULD be an URI, to conform to the RDF metadata
model); value can be an arbitrary string or a reference to an element.

Applicative models can require or suggest to use some metadata for packages, elements in general of element of a
specific type. In this case, they will specify the appropriate keys, and possibly the authorized values for the keys.

4.1.4 Content

In the following text, we call content an octet string with a MIME type. The MIME type describes how the octet string
should be interpreted.

A content can also optionaly be declared as conforming to a model (for instance, XML schema, Relax NG, JSON-
schema, etc). The model itself should in this case be store in a package resource (see below) and the content
will reference this resource. The validation of the content with respect to its model depends on the model MIME
type. A list of valid MIME types for models (for instance application/relax-ng-compact-syntax or
application/schema+json) should be specified by applicative models.

4.2 Element type

This section describes the various element types that can be part of a package. There are roughly three kinds of types:
those related to the annotation structure (media, annotation, relation), those related to the package structure (lists, tags,
queries, dynamic imports) and those related to annotation presentation (views, resources). Some element types can
provide common interfaces. These abstrac interfaces (group, pipeline) are also presented.

4.2.1 Group(interface)

An element matches the group interface if it defines a subset of its package’s elements. A group allows to enumerate
all its elements, as well as its elements matching a given type. Applicative models can define a specific order with
which some element types instances should be enumerated (for instance, chronological order for annotations).

4.2.2 Pipeline (interface)

An element matches the pipeline interface if it takes an element or a package as input, and outputs an element or a
package. The output element can be an pre-existing package element, or a generated element.

Applicative models can specify an integrity constraint mechanism indicating on which elements a pipeline can apply.
This mechanism can use Test views as defined below.

4.2.3 Media

A package references a number of audiovisual medias. Each of this medias is represented by a Media element, which
features a URL addressing the corresponding audiovisual media. The applicative model can specify usable URL
schemes (especially for accessing media without standard URLs such as DVDs). A Media element also specifies

10 Chapter 4. Hypervideo model

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/

Cinelab model Documentation, Release 1.1

Figure 4.1: Overview of the interrelations of element types.

4.2. Element type 11

Cinelab model Documentation, Release 1.1

a temporal frame of reference, specifying a unit and an origin, used to address media fragments. For instance, the
m1 media uses milliseconds units and starts at 123ms. Applicative models MUST specify valid frame of reference
parameters.

Once a package is shared, it is possible that a media URL specified in the package is not accessible by the recipient:
link to a local file, DVD, etc. It is recommended that Media elements are enriched with metadata allowing other users
to identify the media so that they can either localize it an/or check that an available media is “compatible” with the
one specified by the author (for instance: title, duration, ISAN number, etc). The core model does not specify this
metadata (which depends on the technological possibilities). Applicative models are strongly encouraged to specify
such metadata.

4.2.4 Annotation

An annotation is composed of a content, linked to an audiovisual media fragment. The fragment is made essentially of
three elements: the id of the annotated media, a start timecode and an end timecode. Temporal bounds are expressed
by integers, expressing units specified by the Media element.

Some applications may need audiovisual fragments more complex than a simple temporal interval: spatial-temporal
interval, MPEG-4 object, audio track specification (for a DVD), etc. For these scenarios, the corresponding applica-
tive model will specify metadata to augment the annotation with, in order to constrain the annotated fragment with
appropriate information.

A specificity of the model is that the fragment element is not separate from the annotation: each annotation intrisically
defines the media and temporal interval its is linked to. Other approaches commonly define fragment elements inde-
pendently from the annotations, so that a single fragment instance can be linked to multiple annotations. In our model,
annotations are independent (time-speaking) one from another: a fragment cannot exist by itself, since simply defining
a fragment is implicitly taking position on some semantics for the fragment, thus annotating it. These semantics are
most often expressed through an annotation content. From this point of view, it is impossible to discriminate wether
having the same timecodes for 2 annotations means that they are linked or not. It depends on the semantics of the
annotations, thus the model must remain agnostic about it.

4.2.5 Relation

A relation defines an ordered set of annotations. The annotations are the members of the relation. A relation MAY
also have a content.

A relation implements the Group interface for accessing its members.

4.2.6 View

A view can produce a rendition for a package or a package element, possibly using elements issued from associated
audiovisual medias and resources.

Views implement the Pipeline interface and always output a resource (see below). Views possess a content (their defi-
nition), whose MIME type determines how the view is interpreted. The list of valid MIME types for view definitions
must be defined by applicative models.

Test

Some views may produce a content interpretable as a boolean value. Such views can then be used to discriminate
elements in a set, they are called Tests.

12 Chapter 4. Hypervideo model

Cinelab model Documentation, Release 1.1

4.2.7 Resource

A resource is composed of a content (data + MIME type). It does not reference a specific audiovisual media, so does
not strictly belong to the annotation structure. It can be useful to build some views.

4.2.8 Dynamic import

Elements defined within a package are called the package’s own elements. It is also possible to reference from within
a package elements defined by another package. These are called dynamically imported elements (or, when there is no
ambiguity, imported elements).

A dynamic import is an element referencing, through its URL, another package. The applicative model can specify
the usable URL types. The dynamic import element also stores, when possible, the imported package URI.

It is possible that, when a package is shared, the defined imported package URLs are not available for the recipient:
unshared local file, unavailable/unaccessible server, etc. It is recommended that Dynamic import elements are enriched
with metadata allowing other users to identify the package so that they can either download or request it an/or check
that an available package is “compatible” with the one specified by the author (the package URI is of course the first
way to check a package identity, provided it includes versioning information). The core model does not specify this
metadata. Applicative models are strongly encouraged to specify such metadata.

It is not required that the dynamic import structure is acyclic. It is possible that two packages import each other.
However, a package MUST NOT have two dynamic imports to the same package, and cannot import itself.

Constraint: the id of a dynamic import element MUST NOT contain the colon : character, so that its elements can be
correctly addressed (see below).

Ids for dynamically imported elements

When a package dynamically imports another one, we need a way to identify the imported package’s elements from
within the importer package. Using URIs with fragments is possible, but not always convenient. We then propose to
use the notion of identifier reference (id-ref).

Given a package p1 defining a dynamic import i. i references a p2 package, containing an element with the e (in the
context of p2). The e element can be identified within p2 by concatenating the identifier of i, the colon : character,
and the identifier of e (in the contexte of p2). The obtained identifier is the identifier reference (id-ref) of e within p1.

Example: if p1 imports p2 through an import identified with foo, and p2 contains an a1 annotation, then the id-ref of
the annotation in p1 is foo:a1. If p2 contains an annotation :toto:a2 (using a :toto internal prefix), it id-ref in
p1 is foo::toto:a2.

This schema can be used for multiple import levels. For instance, let us assume that p2 imports p3 with the id bar, and
that p3 contains a a3 annotation (id-ref in p3). Its id-ref in p2 is then bar:a3, and its id-ref in p1 is foo:bar:a3.

NB1: The prohibition on using : in dynamic imports identifiers ensures that an id-ref can be unambigously interpreted.

NB2: When the distinction between id and id-ref is not relevant, we simply use the word “identifier”.

Direct and indirect imports

Examples presented below allow to discriminate between directly imported element (i.e. own elements of a package
imported by the current package, for instance foo:a1) and indirectly imported elements (i.e. elements imported by a
package, itself imported by the current package, for instance foo:bar:a1).

A constraint is that only directly imported element can be referenced by a package’s own elements. For instance, if
the p1 package from the previous example defines a r1 relation, any own annotation of p1 can be a member, as well as
the own annotations of p2 (directly imported in p1, through the foo dynamic import). In contrary, the foo:bar:a3

4.2. Element type 13

Cinelab model Documentation, Release 1.1

annotation, indirectly imported by p1, cannot be a member of the r1 relation. To solve this issue, one has to create
a direct import of p3 in p1. Concerned references include: the media associated to an annotation, a content model,
members of a relation, list items, tag-element associations, metadata values.

Ergonomically, this limitation is reasonable and technically, it has good properties: a directly imported element has
a unique id-ref (as opposed to indirectly imported components, which can have several). By limiting the number of
intermediaries, the risk of link breakage is limited. Finally, we can find the URI of a directly imported element with
the available data of the package defining the dynamic import, while it is impossible for an indirectly imported one.

4.2.9 Query

A query implements the Pipeline interface, and always produces a list (see below). If a query produces items external
to the package (for instance, URLs), it has to encapsulate them in resources (temporary, but that can be saved), so that
is indeed produces a list of package elements.

A query has a content. The MIME type of the content determines how the query is interpreted. Le list of valid MIME
types for queries must be specified by applicative models.

4.2.10 List

A list is a sequence, defined by extension and ordered by the user, of package elements (own or directly imported).
Lists implement the Group interface.

Applicative models can specify a contraint integrity mechanism, indicating which objects can belong to a list. This
mechanism can use Test views as defined above.

4.2.11 Tag

A Tag is an element that can be associated with any other package element (own or imported). It allows to group a
number of elements that share a characteristic.

Applicative models can specify a contraint integrity mechanism, indicating which objects can be associated with a tag.
This mechanism can use Test views as defined above.

Tags and dynamic imports

Tags differ from lists in that they do not define the order of their elements, and also by the fact that they are “open”,
which means that a package can dynamically import a tag an associate new elements, while a list is closed: if imported
in a package, it cannot be modified in the context of the importer package. Thus, a set of reusable labels (especially in
combination with corresponding views) can be reused in several packages, as a description schema (but with a more
flexible structure).

Generally, a package can associated any tag (own or imported) to any element (own or imported). A package p1 could
even import from the p2 package a t tag and a e element, and associate them, even it t and e are not associated in their
origin package p2.

It is thus crucial to understand that the tag relationship is in fact a ternary relation between a tag, the associated
element and the package defining the association. Associations defined by a package are automatiquement imported
with the package (as any package element). Thus, any package “inherits” the associations defined by the package it
imports.

A tag can implement the Group interface only in the context of a specific package (for instance the currently edited
package).

14 Chapter 4. Hypervideo model

Cinelab model Documentation, Release 1.1

4.2.12 Pre-defined groups

A package always possesses two pre-defined groups named own and all. The own group contains, by definition, all
elements defined within the package. The all group contains, by definition, all element defined and imported (directly
or not) by the package. It is consequently the union of the own group with all dynamically imported elements.

These groups cannot be removed from the package.

4.2. Element type 15

Cinelab model Documentation, Release 1.1

16 Chapter 4. Hypervideo model

CHAPTER

FIVE

CINELAB APPLICATION MODEL - CAM

In this document, QNames are used to abbreviate URLs (by concatenating the namespace with the suffix). We use the
following namespaces:

• @prefix dc: http://purl.org/dc/elements/1.1/

• @prefix cam: http://advene.org/ns/cinelab/

• @prefix pm: http://advene.org/ns/parser-meta/

5.1 Generalities

The Cinelab application model defines some higher-level concepts such as annotation types, relation types and
schemas, relying on the data model defined in the hypervideo model. The following figure gives an overview of
these new element types. It also specifies more precisely some metadata associated to elements of the model.

Figure 5.1: Cinelab specific elements

17

http://purl.org/dc/elements/1.1/
http://advene.org/ns/cinelab/
http://advene.org/ns/parser-meta/

Cinelab model Documentation, Release 1.1

5.1.1 Package

In order to ease elements addressing, package elements SHOULD be addressable through the TALES syntax as in the
current Advene version. This syntax offers a uniform access to the data model, that can be stored in various ways
(XML file, database, etc). Moreover, it allows to use TALES expressions as URL parts, easing the development of
REST-based architectures.

Any TALES expression must be evaluated in a given context. This context MUST reference a specific package, named
reference package. It MUST be accessible in TALES through the named refpackage. When the TALES expression
is used inside of an element content, the reference package is the package that owns the element.

To make them easier to identify, and ease interoperability with other applications, we define a TALES string as a
character string that can contain TALES expressions identified with the notation ${...}. This makes it possible
to gracefully degrade TALES expression support: applications without TALES support will display the expression,
clearly identified. TALES-supporting systems only have to systematically preprend the string: prefix to the char-
acter string before sending it to the TALES evaluator.

Metadata

Meaning Element API property
prefix/namespace association pm:namespaces namespaces

The pm:namespaces metadata is used to simplify URI use, especially for metadata. Its structure is a set of couples
(prefix, namespace URI). Each couple is encoded by concatenating the prefix and its URI, separated with a space.
Couples are separated by a newline. Using this information, any time a URI is used, the user interface can replace it
with a RDF-like QName.

NB: this metadata belongs to a specific namespace, because it has to be specifically processed when seralis-
ing/analysing a Cinelab XML package. Instead of being stored as other element metadata, it is encoded/fetched
from the XML namespace declarations (xmlns attributes).

5.1.2 Elements

5.1.3 Common metadata

Metadata keys MUST be URIs.

The package and any package element MUST possess the following Dublin Core metadata:

Meaning Element API property
Creator dc:creator creator
Last contributor dc:contributor contributor
Creation date dc:created created
Last modification date dc:modified modified

Dates MUST be encoding according the ISO 8601 norm, with restrictions specified in http://www.w3.org/TR/NOTE-
datetime .

Optionaly, the following metadata MAY be defined:

Meaning Element API property
Title dc:title title
Description dc:description description

18 Chapter 5. Cinelab Application Model - cam

http://docs.zope.org/zope2/zope2book/AppendixC.html#tales-overview
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

Cinelab model Documentation, Release 1.1

TALES Addressing

Any object with metadata MUST expose a TALES attribute meta that offers an access to its metadata through a
TALES expression like obj/meta/dc/creator

where dc (in the example) is a prefix declared in the pm:namespaces metadata. More precisely, the
pm:namespaces of the reference package for the TALES expression will be used (and not the package owning
the element).

Metadata defined by the applicative model can specify a synonym property in the API column, for instance creator
for dc:creator. In this case, an equivalent TALES expression can be obj/creator.

5.1.4 Content

A content specifies its MIME type.

Some generic MIME types like application/xml or application/json may specify additional contraints
for some content sub-types (as XML schemas or JSON-schemas for instances). A content MAY specify a model
attribut that will contain the identifier of a resource whose content will be the appropriate schema.

The following schemas MAY be implemented:

Schema Content
MIME type

Schema MIME type Schema content

Perl Compatible Regular
Expression (PCRE)

text/* application/x-advene-
schema-pcre

A regular expression

RelaxNG applica-
tion/xml

application/relax-ng-
compact-syntax

A RelaxNG schema in
compact notation

5.2 Elements

5.2.1 Media

Attributes

Meaning API property
URL url
unit (ms, frame...) unit
origin (in specified unit)d origin

The only temporal reference that an implementation MUST support uses the “ms” unit (milliseconds), with a 0 origin.

A URL is used to specify the designated media. In the specific case of DVDs, there is no standard to define generic
URLs. The model specifies the following format: dvd://title/chapter where title and chapter are
optional numbers (defaulting to 1 if not specified). Application should convert this URL to the appropriate format for
the used multimedia player.

Metadata

The following metadata MAY be defined:

Meaning Element API property
Resource duration cam:duration duration
URI cam:uri uri

5.2. Elements 19

Cinelab model Documentation, Release 1.1

If the URL is not accessible, the URI is used as a key to identify another URL for the same media.

5.2.2 Test

A test is a view that returns a value interpretable as a boolean value. It is notably used to express constraints on
elements.

The following MIME type MAY be implemented:

application/x-advene-builtin-test Test défini en interne par Advene

The builtin test has for content a number of attributes to check. For instance, content-type=text/html. Such
a format has the interesting property of being easily introspected, in order to allow automatic GUI generation.

5.2.3 Annotation

Metadata

The following metadata MUST be specified.

Meaning Element API property
Annotation type id cam:type type

The following metadata MAY be defined:

Meaning Element API property
Annotation color cam:color TALES string that can be evaluated in the annotation context to get its color

5.2.4 Relation

Metadata

The following metadata MUST be specified.

Meaning Element API property
Relation type id cam:type type

The following metadata MAY be defined:

Meaning Element API property
Relation color cam:color TALES string that can be evaluated in the relation context to get its color

5.2.5 Annotation type and relation type

An annotation type (resp. a relation type) is a tag, that has the cam:system-typemetadata, with value “annotation-
type” (resp. “relation-type”). An annotation (resp. relation) MUST be associated with exactly one annotation
type (resp. relation type), and this association MUST be consistent with the annotation (resp. relation) metadata
cam:type.

20 Chapter 5. Cinelab Application Model - cam

Cinelab model Documentation, Release 1.1

Metadata

The following metadata MAY be defined:

Meaning Name Content
Element representation cam:representationTALES string that should be

evaluated on elements of the type, to
get a compact textual representation

Type color ca:color TALES string that should be
evaluated on the type to get its color.

Element color cam:element-
color

TALES string that should be
evaluated on elements of the type, to
get their color

Generic constraint cam:element-
constraint

Test view that elements of this type
should match

Content type constraint 1 cam:content-
mimetype

String specifying the MIME type
for elements of the type

Content model constraint 1 cam:content-
model of
the type

Resource specifying the content
model for elements of the type

5.2.6 Schema

A schema is a list whose metadata cam:system-type value is “schema”. A schema represents a description
schema, grouping a consistent set of annotation types, relation types and possibly other elements related to the de-
scription choices (resources containing content models, tests, associated views...).

5.2.7 Tag

Metadata

The following metadata MAY be defined:

Meaning Element API property
Tag color cam:color TALES string that can be evaluated in the tag context to get its color

5.2.8 Resources

Core model resources. Some may be hierarchised as in a filesystem. Their identifier will then be prefixed with
:userfile: and will encode their path in the identifier by separating directory names with :.

5.2.9 Implementation remarks

Any python object that will have to be handled in the Advene model has to be wrapped in a (temporary) Resource
object, so that model consistency is preserved. For efficiency reasons, effective wrapping is carried out lazily.

For instance, a view produces a resource. But if is is included in another view (through TAL for instance), there is
no need to transform it into a resource, since it will be consumed (by the including view) before reaching the Advene
model level. The including view has to produce a resource, which will be returned to the application.

1both metadata (Content type constraint and content model constraint) bring no more expressivity than Generic constraint (which is more
generic), but they allow to remove one indirection level (the Test view) for most frequently used constraints.

5.2. Elements 21

Cinelab model Documentation, Release 1.1

5.2.10 Dynamic imports

Attributes

Meaning API property
URL url
URI uri

If an URL is not accessible, the URI value can be used by the application to identify another URL for the same
package.

If the package loaded at a given URL declares a URI other than specified by the dynamic import, the application
SHOULD notify the user to determine the appropriate way to handle this inconsistency (update the dynamic import,
or look for the given URI at another URL).

22 Chapter 5. Cinelab Application Model - cam

CHAPTER

SIX

CINELAB FILE FORMAT

6.1 Introduction

The data model defined in the previous sections must be serialized to be exchangeable. To this effect, 2 serialization
formats have been specified, in order to improve interoperability between applications that use the Cinelab data model.
The first format is based on XML, while the second one uses the JSON syntax. In addition, a Zip-based serialization
has been specified in order to make it more convenient to store huge, non-text resources.

6.2 File extensions

To ease identification of Cinelab package, applications SHOULD use the following file extensions: .cxp for plain
XML files (Cinelab XML Package), .czp for compressed files (Cinelab Zip Package), .cjp for JSON files (Cinelab
JSON Package).

6.3 Cinelab Zip-Packages

XML does not offer a standard way to correctly handle large binary objects like images, application files, etc. More-
over, plain XML files can reach huge sizes. The same arguments apply to JSON syntax. We thus use a OpenDocument-
like format to store the XML representation of a package with its associated binary files, and to compress this content.
The file is a standard Zip file, whose structure is described below.

Information about the files present in the package is stored in a XML manifest file. It is always stored as
META-INF/manifest.xml. Its main data is

• a list of all package files

• the MIME type for each file

• if one of the files is encrypted, the necessary information to allow its decryption.

6.3.1 General layout

The package is serialized as a .zip file, using the same layout and principles as the OpenDocument format (see pp.
684-692 of http://www.oasis-open.org/committees/download.php/12572/OpenDocument-v1.0-os.pdf).

General layout:

• mimetype : the MIME type (application/x-advene-zip-package)

23

http://www.oasis-open.org/committees/download.php/12572/OpenDocument-v1.0-os.pdf

Cinelab model Documentation, Release 1.1

• content.xml : le plain XML package

• userfiles/ : a file hierarchy (accessible through the package/resources TALES path), containing any
file (CSS, icons...) necessary to build views from the package. From the core model point of view, each file is a
resource, whose id has the :user_file: prefix, and encodes the path by separating directory names with :.
NB: directories will also appear as resources, of a specific type inode/directory.

• data/ : internal data associated to the package (rich/externalized annotation content)

• preview.xml : aggregated statistical data, to ease previews/searches

Contents (for annotations, relations, views, etc) can either be stored directly in the XML file, or externalized in the
data/ directory. (cf OpenDocument p. 686)

In a given file contained in a package, relative URIs are used to reference other files of the same package, but also to
reference other files of the filesystem. The following restrictions are imposed for internal references: * only files of the
same package can be referenced internally * URIs referencing another file of the same package MUST be relative and
MUST NOT contain paths that are not part of the package. This notably means that files in a package MUST NOT be
referenced through an absolute URI. * a file in a package cannot be referenced from the outside of the package (either
from the filesystem or another package)

A relative path present in a file contained in a package must be parsed exactly like it would if the package is uncom-
pressed in a directory with the same basename as the package. The base URI of relative path is the URI of the directory
containing the file containing the relative path.

For instance, the userfiles/foo.txt references a user file (package resource). ../file.txt allows to access
a file in the same directory as the package.

Any other URI reference, specifically those that specify a protocol (http:), an authority (i.e. //) or an absolute path (i.e.
/) do not need any specific processing. This means that absolute paths do not reference files inside of the package, but
inside of the hierarchy (filesystem most of the time) containing the package.

6.3.2 Thumbnails

A graphical, iconic representation of the document MAY be generated when the file is saved. It should be a represen-
tation of the default view for the packagem, and should be generated without effect, frame or borders.

The icon is saved as Thumbnails/thumbnail.png. The file and containing directory are not mentioned in the
manifest.xml file, since they are not really part of the document.

In accordance with the Thumbnail Managing Standard (TMS) (cf www.freedesktop.org), icons MUST be saved as
24-bit PNG files, non-interlaces, with complete alpha transparency. The required size is 128x128 pixels.

6.3.3 Manifest file

Cf OpenDocument spec, p. 687

6.4 XML serialization

6.4.1 Encoding

The encoding of XML serialisation MUST be UTF-8.

24 Chapter 6. Cinelab file format

Cinelab model Documentation, Release 1.1

6.4.2 Metadata

In accordance with the model, package metadata MUST contain the following keys: dc:creator, dc:created,
dc:contributor, dc:contributed. In package elements, these metadata may be omitted from the serialisa-
tion, and are then inherited (since they must be available in the model) using the following rules:

• dc:creator, dc:created: the element inherits the value from its package

• dc:contributor: if the dc:creator is explicitly specified for the element, its value is used; else, the
dc:contributor package value is used.

• dc:modified: if the dc:created is explicitly specified for the element, its value is used; else, the
dc:modified package value is used.

In the example XML file, multiple commented cases are proposed.

6.4.3 Namespaces

The package pm:namespaces metadata is specifically processed: it is encoded in the XML root element as xmlns
attributes.

6.4.4 Type declaration

To make the generated XML easier to read, some metadata specified in the applicative model are encoded as at-
tributes instead of plain metadata (type for annotations and relations), or as elements (annotation-type, relation-type,
schema). See the RelaxNG below for more information.

6.4.5 RelaxNG schema

The compact RelaxNG notation is used to specify the proposed format: cinelab.rnc

Advene XML format description
RNC Tutorial: http://relaxng.org/compact-tutorial-20030326.html

Cinelab Application Model:
default namespace = "http://advene.org/ns/cinelab/"
namespace cam = "http://advene.org/ns/cinelab/"

Dublin Core model
namespace dc = "http://purl.org/dc/elements/1.1/"

XML Schema datatypes
datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"

grammar {
start = element package {

id_attribute &
Not really an ID, but something is needed to *suggest* ids for
dynamic imports or application identifier (for the web server).
Should probably be dynamically extracted from the URI instead.
uri_attribute?

&
element medias {

element media {
id_attribute &

6.4. XML serialization 25

http://advene.org/cinelab/example.cxp
http://advene.org/cinelab/cinelab.rnc

Cinelab model Documentation, Release 1.1

url_attribute &
attribute unit { "ms" | "frame" }? & # defaults to ms
attribute origin { xsd:long }? & # defaults to 0
tags_element? &
element meta {

common_meta_elements &
element duration { xsd:long }? &
uri_meta_element?

}?
}*

}?
&

element imports {
element import {

attribute id { import-identifier } &
url_attribute &
uri_attribute? &
tags_element? &
element meta {

common_meta_elements
}?

}*
}?

&
element annotations {

element annotation {
id_attribute &
attribute media { identifier-ref } &
attribute begin { xsd:long } &
attribute end { xsd:long } &
content_element &
tags_element? &
element meta {

common_meta_elements &
element type { id-ref_attribute }

}?
}*

}?
&

element relations {
element relation {

id_attribute &
content_element? &
element members {

element member { id-ref_attribute }*
} &
tags_element? &
element meta {

common_meta_elements &
element type { id-ref_attribute }

}?
}*

}?
&

element tags {
element tag {

id_attribute &
tags_element? &

26 Chapter 6. Cinelab file format

Cinelab model Documentation, Release 1.1

element imported-elements {
element \element { id-ref_attribute }*

}? &
element meta {

common_meta_elements &
constraint_meta_element?

}?
}*

}?
&

element annotation-types {
element annotation-type { type_structure }*

}?
&

element relation-types {
element relation-type { type_structure }*

}?
&

element lists {
element \list { list_structure }*

}?
&

element schemas {
element schema { list_structure }*

}?
&

element queries {
element query {

id_attribute &
content_element &
tags_element? &
element meta {

common_meta_elements &
constraint_meta_element?

}?
}*

}?
&

element views {
element view {

id_attribute &
content_element &
tags_element? &
element meta {

common_meta_elements &
constraint_meta_element?

}?
}*

}?
&

element resources {
element resource {

id_attribute &
content_element &
tags_element? &
element meta { common_meta_elements }?

}*
}?

6.4. XML serialization 27

Cinelab model Documentation, Release 1.1

&
element external-tag-associations {

element association {
attribute \element { identifier-ref } &
attribute tag { identifier-ref }

}*
}?

&
element meta {

element dc:creator { text } &
element dc:contributor { text } &
element dc:created { xsd:dateTime } &
element dc:modified { xsd:dateTime } &
element * -
(dc:creator | dc:contributor | dc:created | dc:modified | cam:*) {

id-ref_attribute | text
}*

}
}

##
Reusable elements and structures
##

tags_element is used in all elements.
tags_element = element tags {

element tag { id-ref_attribute }*
}

content_element is used in annotation, relation, queries, views &
resources.
A content has a mimetype, and defines its data either through a
reference to an external resource, or through its #DATA section.
content_element = element content {

attribute mimetype { text }?, # defaults to text/plain
attribute encoding { "base64" }?, # only encoding supported
(url_attribute | text)

}

type_structure defines the common structure of the following elements:
annotation-type, relation-type
type_structure =

id_attribute &
tags_element? &
element meta {

common_meta_elements &
constraint_meta_element? &
element representation { TALESstring }? &
element element-color { TALESstring }? &
element content-mimetype { text }? &
element content-model { id-ref_attribute }?

}

list_structure defines the common structure of the following elements:
list, schema
list_structure =

28 Chapter 6. Cinelab file format

Cinelab model Documentation, Release 1.1

id_attribute &
element items {

element item { id-ref_attribute }*
}? &
tags_element? &
element meta {

common_meta_elements
&
constraint_meta_element?

}

##
meta-data related elements and structures
##

common_meta_elements =
element dc:creator { text }? &
element dc:contributor { text }? &
element dc:created { xsd:dateTime }? &
element dc:modified { xsd:dateTime }? &
Almost any element can define a color
element color { TALESstring }? &
Allow to have user-defined metadata items
element * - (dc:creator | dc:contributor | dc:created | dc:modified |

cam:*) {
id-ref_attribute | text

}*

constraint_meta_element = element element-constraint {
Reference an existing view/test
id-ref_attribute

}

uri_meta_element = element uri { xsd:anyURI }

##
reusable attributes
##

NB: it would have been sensible to use ’href’ instead of ’url’, which is
common practice to hold a link (HTML, XLink), but since the API uses
’url’, it seemed a better idea to keep the XML format consistent with the
URI
url_attribute = attribute url { xsd:anyURI }
uri_attribute = attribute uri { xsd:anyURI }

id_attribute = attribute id { identifier }
id-ref_attribute = attribute id-ref { identifier-ref }

##
attribute special datatypes
##

6.4. XML serialization 29

Cinelab model Documentation, Release 1.1

Naming identifiers
identifier = xsd:string {

pattern = "([a-zA-Z_][a-zA-Z0-9_\-]*|:[a-zA-Z0-9_:\-]*)"
}

import identifiers have additional restrictions restrictions
import-identifier = xsd:ID { pattern = "[a-zA-Z_][a-zA-Z0-9_\-]*" }

Identifier references allow linked elements (beginning with :)
identifier-ref = xsd:string {

pattern = "([a-zA-Z_:][a-zA-Z0-9_:\-]*)"
}

a regexp for TALESstrings would be overly complex, so: A
TALES-string is a character string which can contain TALES
expressions embedded with the ${...} notation. For example, the
TALES expression foo/bar alone is represented by the TALES
string ${foo/bar}
TALESstring = text

}

6.4.6 Example XML file

An example of conforming XML is given below, and can be downloaded here.

<package xmlns="http://advene.org/ns/cinelab/" xmlns:dc="http://purl.org/dc/elements/1.1/">
<meta>
<dc:creator>pchampin</dc:creator>
<dc:created>2010-09-01T12:33:53.403508</dc:created>
<dc:contributor>oaubert</dc:contributor>
<dc:modified>2010-09-06T12:33:53.420459</dc:modified>
<dc:description>Example Cinelab package</dc:description>
<dc:title>Nosferatu analysis</dc:title>
<default_utbv xmlns="http://www.advene.org/ns/advene/">start_view</default_utbv>

</meta>
<imports>
<import id="cam" url="http://liris.cnrs.fr/advene/cam/bootstrap" />

</imports>
<annotation-types>
<annotation-type id="free-text-annotation">

<tags>
<tag id-ref="important" />
<tag id-ref="todo" />

</tags>
<meta>
<dc:modified>2010-09-02T12:33:53.416368</dc:modified>
<!-- dc:creator, dc:created are inherited from the package -->
<!-- dc:contributor is inherited *from the package*, as no dc:creator

is explicitly specified here -->
<color>#55ff55</color>
<element-color>${here/tag_color}</element-color>
<element-constraint id-ref=":constraint:free-text-annotation" />
<dc:description>Shot layout of the movie</dc:description>
<dc:title>Shots</dc:title>

</meta>
</annotation-type>

30 Chapter 6. Cinelab file format

http://advene.org/cinelab/example.cxp

Cinelab model Documentation, Release 1.1

<annotation-type id="shots">
<meta>

<dc:created>2010-09-02T12:33:53.414772</dc:created>
<dc:creator>oaubert</dc:creator>
<!-- dc:contributor, dc:modified are inherited from dc:creator and

dc:created, respectively -->
<element-constraint id-ref=":constraint:shots" />

</meta>
</annotation-type>

</annotation-types>
<tags>
<tag id="important">

<meta>
<color>#00ff00</color>
<dc:created>2010-09-02T12:33:53.407836</dc:created>
<dc:creator>oaubert</dc:creator>
<dc:modified>2010-09-03T12:33:53.409026</dc:modified>
<!-- dc:contributor is inherited from dc:creator -->
<dc:description>Important things to note</dc:description>
<dc:title>Important</dc:title>

</meta>
</tag>
<tag id="todo">

<meta>
<dc:contributor>pchampin</dc:contributor>
<dc:modified>2010-09-03T12:33:53.406964</dc:modified>
<!-- dc:creator and dc:created are inherited from the package -->
<color>#ff4444</color>
<dc:description>Things to work on</dc:description>
<dc:title>TODO</dc:title>

</meta>
</tag>

</tags>
<medias>
<media id="m1" url="/data/video/Nosferatu.avi" origin="0" unit="ms">

<meta>
<uri>http://liris.cnrs.fr/advene/videos/baz.avi</uri>
<dc:contributor>oaubert</dc:contributor>
<dc:created>2010-09-06T12:33:53.404347</dc:created>
<dc:creator>oaubert</dc:creator>
<dc:modified>2010-09-06T12:33:53.404904</dc:modified>

</meta>
</media>

</medias>
<annotations>
<annotation begin="1230" end="4560" id="a1" media="m1">

<content mimetype="text/plain">{ ’num’ : 1, ’title’: ’Introduction’, ’characters’: [’john doe’, ’jane doe’] }</content>
<meta>

<type id-ref="free-text-annotation" />
<dc:contributor>oaubert</dc:contributor>
<dc:created>2010-09-06T12:33:53.417550</dc:created>
<dc:creator>oaubert</dc:creator>
<dc:modified>2010-09-06T12:33:53.420459</dc:modified>

</meta>
</annotation>
<annotation begin="1230" end="4560" id="a3" media="m1">

<content encoding="base64" mimetype="application/json" />
<meta>

6.4. XML serialization 31

Cinelab model Documentation, Release 1.1

<type id-ref="shots" />
<dc:contributor>oaubert</dc:contributor>
<dc:created>2010-09-06T12:33:53.419975</dc:created>
<dc:creator>oaubert</dc:creator>
<dc:modified>2010-09-06T12:33:53.419975</dc:modified>

</meta>
</annotation>
<annotation begin="4560" end="7890" id="a2" media="m1">

<content encoding="base64" mimetype="image/png" />
<meta>

<type id-ref="free-text-annotation" />
<dc:contributor>oaubert</dc:contributor>
<dc:created>2010-09-06T12:33:53.418975</dc:created>
<dc:creator>oaubert</dc:creator>
<dc:modified>2010-09-06T12:33:53.418975</dc:modified>

</meta>
</annotation>

</annotations>
<views>
<view id=":constraint:free-text-annotation">

<content mimetype="application/x-advene-type-constraint">mimetype=application/json</content>
<meta>

<dc:contributor>oaubert</dc:contributor>
<dc:created>2010-09-06T12:33:53.410127</dc:created>
<dc:creator>oaubert</dc:creator>
<dc:modified>2010-09-06T12:33:53.416718</dc:modified>

</meta>
</view>
<view id=":constraint:shots">

<content mimetype="application/x-advene-type-constraint" />
<meta>

<dc:contributor>oaubert</dc:contributor>
<dc:created>2010-09-06T12:33:53.414208</dc:created>
<dc:creator>oaubert</dc:creator>
<dc:modified>2010-09-06T12:33:53.414208</dc:modified>

</meta>
</view>

</views>
</package>

6.5 JSON serialization

The JSON serialization has been defined to facilitate the exchange of package information in web-based contexts.

6.5.1 Encoding

The encoding of JSON serialisation MUST be UTF-8.

6.5.2 Type declaration

To make the generated JSON easier to read, some metadata specified in the applicative model are encoded as at-
tributes instead of plain metadata (type for annotations and relations), or as elements (annotation-type, relation-type,
schema).

32 Chapter 6. Cinelab file format

Cinelab model Documentation, Release 1.1

6.5.3 General layout

The package is represented by a JSON object with the following properties:

• format: always "http://advene.org/ns/cinelab/"

• each of the following property will reference an array of JSON objects: imports, medias, annotations,
relations, tags, annotation_types, relation_types, lists, schemas, queries, views,
resources

• for every element (the top-level package, and all defined model elements), an associated meta object holds its
metadata, model-defined and user-defined.

6.5.4 Metadata

In accordance with the model, package metadata MUST contain the following keys: creator, created,
contributor, contributed. In package elements, these metadata may be omitted from the serialisation, and
are then inherited (since they must be available in the model) using the following rules:

• creator, created: the element inherits the value from its package

• contributor: if the creator is explicitly specified for the element, its value is used; else, the
contributor package value is used.

• modified: if the created is explicitly specified for the element, its value is used; else, the modified
package value is used.

The following example JSON file provides an example package.

{
"format": "http://advene.org/ns/cinelab/",
"imports": [{

"id": "acav",
"url": "http://acav.dailymotion.com/std-schemas-v1.cjp"

}],
"medias": [{

"id": "video",
"url": "http://www.dailymotion.com/video/xdg0h0",
"meta": {

"title": "Ben se fait des films"
}

}],

"annotation_types": [
{

"id": "Character",
"meta": {

"description": "Appearance of the main characters.",
"content-mimetype": "application/json",
"content-model": { "id_ref": "Characters_model" }

}
},
{

"id": "Supernatural",
"meta": {

"description": "An appearance of something supernatural."
}

}
],

6.5. JSON serialization 33

http://advene.org/cinelab/example.cjp

Cinelab model Documentation, Release 1.1

"resources": [
{

"id": "Character_model",
"content": {

"data": {
"enum": ["Dracula", "Jonathan", "Nina", "Reinfield"]

}
}

},
],

"tags": [
{

"id": "funny"
},
{

"id": "scary"
}

],

"annotations": [
{

"id": "a1",
"type": "Supernatural",
"media": "video",
"begin": 1234,
"end": 5678,
"content": {

"data": "a flying toaster"
},
"tags": ["funny"]

},
{

"id": "a2",
"type": "acav:TimedText",
"media": "video",
"begin": 1234,
"end": 5678,
"content": {

"mimetype": "application/json",
"data": {

"text": "ceci est un sous-titre",
"style": "font-size: 120%"

},
"model": "acav:TimedText_model"

},
"tags": ["funny", "scary"]

},
{

"id": "a3",
"type": "Character",
"media": "video",
"begin": 234,
"end": 567,
"content": {

"data": ’"Nina"’
},
"tags": ["funny"]

34 Chapter 6. Cinelab file format

Cinelab model Documentation, Release 1.1

},
],

"meta": {
"creator": "Pierre-Antoine Champin",
"created": "2011-06-09T07:25:43",
"contributor": "Pierre-Antoine Champin",
"modified": "2011-06-09T07:25:43"

}
}

6.5.5 JSON-Schema

Two JSON-Schema schemas are proposed: a general schema and a more strict schema that does not allow additional
undefined properties to be added to elements.

We include below the more permissive schema:

{
"description":"Cinelab JSON Package (CJP)",
"version": "1.0",
"$schema" : "http://json-schema.org/draft-03/schema#",
"id" : "http://advene.org/ns/cinelab/cjp#",
"type":"object",

"properties":{

"__definitions": {
"description": "A placeholder for reusable subschemas",
"type": [

{
"id": "#id_ref",
"type": "string",
"pattern": "^([a-zA-Z_][a-zA-Z0-9_\\-]*:)?([a-zA-Z_][a-zA-Z0-9_\\-]*|:[a-zA-Z0-9_:\\-]*)$"

},
{

"id": "#strict-id_ref",
"type": "string",
"pattern": "^[a-zA-Z_][a-zA-Z0-9_\\-]*:([a-zA-Z_][a-zA-Z0-9_\\-]*|:[a-zA-Z0-9_:\\-]*)$"

},
{

"id": "#TALESstring",
"type": "string",
"description": "a regexp for TALESstrings would be overly complex, so: A TALES-string is a character string which can contain TALES expressions embedded with the ${...} notation. For example, the TALES expression foo/bar alone is represented by the TALES string ${foo/bar}"

},
{

"id": "#proto-content",
"type": "object",
"properties": {

"mimetype": {
"description": "TODO: better regex for mimetypes?",
"type": "string",
"pattern": "^[-+a-z0-9]+/[-+a-z0-9]+$",
"default": "text/plain"

},
"model": { "$ref": "#id_ref" }

}

6.5. JSON serialization 35

http://json-schema.org/
http://advene.org/cinelab/cinelab.jsons
http://advene.org/cinelab/cinelab-strict.jsons

Cinelab model Documentation, Release 1.1

},
{

"id": "#content-with-data",
"extends": [{ "$ref": "#proto-content" }],
"properties": {

"url": {
"type": "string",
"format": "uri",
"required": true

},
"data": {

"disallow": "any"
},
"encoding": {

"disallow": "any"
}

}
},
{

"id": "#content-with-url",
"extends": [{ "$ref": "#proto-content" }],
"properties": {

"data": {
"type": ["string", "object"],
"required": true

},
"encoding": {

"enum": ["base64"]
},
"url": {

"disallow": "any"
}

}
},
{

"id": "#content",
"type": [

{ "$ref": "#content-with-url" },
{ "$ref": "#content-with-data" }

]
},
{

"id": "#meta",
"type": "object",
"properties": {

"creator": {
"type": "string"

},
"created": {

"type": "string",
"format": "date-time"

},
"contributor": {

"type": "string"
},
"modified": {

"type": "string",
"format": "date-time"

36 Chapter 6. Cinelab file format

Cinelab model Documentation, Release 1.1

}
},
"additionalProperties": {

"type": ["object", "string", "number", "boolean"],
"properties": {

"id_ref": { "$ref": "#id_ref" }
},

}
},
{

"id": "#element",
"type": "object",
"properties": {

"id": {
"type": "string",
"pattern": "^([a-zA-Z_][a-zA-Z0-9_\\-]*|:[a-zA-Z0-9_:\\-]*)$",
"required": true

},
"tags": {

"type": "array",
"items": { "$ref": "#id_ref" }

},
"meta": {

"extends": [{ "$ref": "#meta" }],
"properties": {

"color": { "$ref": "#TALESstring" }
}

}
}

},
{

"id": "#element-with-content",
"extends": [{ "$ref": "#element" }],
"properties": {

"content": {
"extends": [{ "$ref": "#content" }],
"required": true

}
}

},
{

"id": "#type",
"extends": [{ "$ref": "#element" }],
"properties": {

"meta": {
"properties": {

"content_mimetype": { "type": "string" },
"content_model": { "type": "object" },
"element_constraint": { "type": "object" },
"representation": { "$ref": "#TALESstring" },
"elementColor": { "$ref": "#TALESstring" }

}
}

}
},
{

"id": "#list",
"extends": [{ "$ref": "#element" }],

6.5. JSON serialization 37

Cinelab model Documentation, Release 1.1

"properties": {
"items": {

"type": "array",
"items": { "$ref": "#id_ref" }

},
"meta": {

"properties": {
"element_constraint": { "type": "object" }

}
}

}
}

]
},

"format": {
"enum": ["http://advene.org/ns/cinelab/"],
"required": true

},

"@context": {
"type": "object",
"patternProperties": {

"[a-zA-Z_][a-zA-Z0-9-_.]*": {
"type": "string",
"format": "uri",

}
}

},

"@": {
"type": "string",
"format": "uri",

},

"imports": {
"type": "array",
"items": {

"extends": [{ "$ref": "#element" }],
"properties": {

"id": {
"type": "string",
"pattern": "^[a-zA-Z_][a-zA-Z0-9_\\-]*$",

},
"url": {

"type": "string",
"format": "uri",
"required": true

},
"uri": {

"type": "string",
"format": "uri"

}
}

}
},

38 Chapter 6. Cinelab file format

Cinelab model Documentation, Release 1.1

"medias": {
"type": "array",
"items": {

"extends": [{"$ref": "#element"}],
"properties": {

"url": {
"type": "string",
"format": "uri",
"required": true

},
"unit": {

"type": "string",
"enum": ["ms", "frame"],
"default": "ms"

},
"origin": {

"type": "integer",
"default": 0

},
"meta": {

"properties": {
"duration": {

"type": "integer"
},
"uri": {

"type": "string",
"format": "uri"

}
}

},
"frame_of_reference": {

"type": "string",
"format": "uri"

}
}

}
},

"annotations": {
"type": "array",
"items": {

"extends": [{ "$ref": "#element-with-content" }],
"properties": {

"type": {
"extends": [{ "$ref": "#id_ref" }],
"required": true

},
"media": {

"extends": [{ "$ref": "#id_ref" }],
"required": true

},
"begin": {

"type": "integer",
"required": true

},
"end": {

"type": "integer",
"required": true

6.5. JSON serialization 39

Cinelab model Documentation, Release 1.1

}
}

}
},

"relations": {
"type": "array",
"items": {

"extends": [{ "$ref": "#element" }],
"properties": {

"type": {
"extends": [{ "$ref": "#id_ref" }],
"required": true

},
"members": {

"type": "array",
"items": { "$ref": "#id_ref" }

},
"content": { "$ref": "#content" }

}
}

},

"tags": {
"type": "array",
"items": {

"extends": [{ "$ref": "#element" }],
"properties": {

"imported_elements": {
"type": "array",
"items": { "$ref": "#strict-id_ref" }

},
"meta": {

"properties": {
"element_constraint": { "type": "object" }

}
}

}
}

},

"annotation_types": {
"type": "array",
"items": { "$ref": "#type" }

},

"relation_types": {
"type": "array",
"items": { "$ref": "#type" }

},

"lists": {
"type": "array",
"items": { "$ref": "#list" }

},

"schemas": {
"type": "array",

40 Chapter 6. Cinelab file format

Cinelab model Documentation, Release 1.1

"items": { "$ref": "#list" }
},

"queries": {
"type": "array",
"items": {

"extends": [{"$ref": "#element-with-content"}],
"properties": {

"meta": {
"properties": {

"element_constraint": { "type": "object" }
}

}
}

}
},

"views": {
"type": "array",
"items": {

"extends": [{ "$ref": "#element-with-content" }],
"properties": {

"meta": {
"properties": {

"element_constraint": { "type": "object" }
}

}
}

}
},

"resources": {
"type": "array",
"items": { "$ref": "#element-with-content" }

},

"tagging": {
"type": "array",
"items": {

"type": "object",
"properties": {

"element": {
"extends": [{ "$ref": "#strict-id_ref" }],
"required": true

},
"tag": {

"extends": [{ "$ref": "#strict-id_ref" }],
"required": true

}
}

}
},

"meta": {
"extends": [{ "$ref": "#meta" }],
"creator": { "required": true },
"created": { "required": true },
"contributor": { "required": true },

6.5. JSON serialization 41

Cinelab model Documentation, Release 1.1

"modified": { "required": true }
}

}
}

42 Chapter 6. Cinelab file format

	Context
	Introduction
	Cinelab glossary
	Package
	Annotation
	Annotation type
	Relation between annotations
	Relation type
	Resource
	Group
	Query
	Description schema
	View

	Hypervideo model
	General points
	Element type

	Cinelab Application Model - cam
	Generalities
	Elements

	Cinelab file format
	Introduction
	File extensions
	Cinelab Zip-Packages
	XML serialization
	JSON serialization

